29 research outputs found

    Protein expression from unintegrated HIV-1 DNA introduces bias in primary in vitro post-integration latency models

    Get PDF
    To understand the persistence of latently HIV-1 infected cells in virally suppressed infected patients, a number of in vitro models of HIV latency have been developed. In an attempt to mimic the in vivo situation as closely as possible, several models use primary cells and replication-competent viruses in combination with antiretroviral compounds to prevent ongoing replication. Latency is subsequently measured by HIV RNA and/or protein production after cellular activation. To discriminate between pre- and post-integration latency, integrase inhibitors are routinely used, preventing novel integrations upon cellular activation. Here, we show that this choice of antiretrovirals may still cause a bias of pre-integration latency in these models, as unintegrated HIV DNA can form and directly contribute to the levels of HIV RNA and protein production. We further show that the addition of reverse transcriptase inhibitors effectively suppresses the levels of episomal HIV DNA (as measured by 2-LTR circles) and decreases the levels of HIV transcription. Consequently, we show that latency levels described in models that only use integrase inhibitors may be overestimated. The inclusion of additional control conditions, such as 2-LTR quantification and the addition of reverse transcriptase inhibitors, is crucial to fully elucidate the actual levels of post-integration latency

    Impact of a decade of successful antiretroviral therapy initiated at HIV-1 seroconversion on blood and mucosal reservoirs

    Get PDF
    Persistent reservoirs remain the major obstacles to achieve an HIV-1 cure. Prolonged early antiretroviral therapy (ART) may reduce the extent of reservoirs and allow for virological control after ART discontinuation. We compared HIV-1 reservoirs in a cross-sectional study using polymerase chain reaction-based techniques in blood and tissue of early-treated seroconverters, late-treated patients, ART-naĂŻve seroconverters, and long-term non-progressors (LTNPs) who have spontaneous virological control without treatment. A decade of early ART reduced the total and integrated HIV-1 DNA levels compared with later treatment initiation, but not reaching the low levels found in LTNPs. Total HIV-1 DNA in rectal biopsies did not differ between cohorts. Importantly, lower viral transcription (HIV-1 unspliced RNA) and enhanced immune preservation (CD4/CD8), reminiscent of LTNPs, were found in early compared to late-treated patients. This suggests that early treatment is associated with some immunovirological features of LTNPs that may improve the outcome of future interventions aimed at a functional cure

    Comparison of methods for in-house screening of HLA*B57:01 to prevent abacavir hypersensitivity in HIV-1 care

    Get PDF
    Abacavir is a nucleoside reverse transcriptase inhibitor used as part of combination antiretroviral therapy in HIV-1-infected patients. Because this drug can cause a hypersensitivity reaction that is correlated with the presence of the HLA-B*57:01 allotype, screening for the presence of HLA-B*57:01 is recommended before abacavir initiation. Different genetic assays have been developed for HLA-B*57:01 screening, each with specific sensitivity, turnaround time and assay costs. Here, a new real-time PCR (qPCR) based analysis is described and compared to sequence specific primer PCR with capillary electrophoresis (SSP PCR CE) on 149 patient-derived samples, using sequence specific oligonucleotide hybridization combined with high resolution SSP PCR as gold standard. In addition to these PCR based methods, a complementary approach was developed using flow cytometry with an HLA-B17 specific monoclonal antibody as a pre-screening assay to diminish the number of samples for genetic testing. All three assays had a maximum sensitivity of >99. However, differences in specificity were recorded, i.e. 84.3%, 97.2% and >99% for flow cytometry, qPCR and SSP PCR CE respectively. Our data indicate that the most specific and sensitive of the compared methods is the SSP PCR CE. Flow cytometry pre-screening can substantially decrease the number of genetic tests for HLA-B*57:01 typing in a clinical setting

    Challenges of in vitro HIV latency models

    No full text

    Minimal requirements for primary HIV latency models based on a systematic review

    No full text
    Due to the scarcity of HIV-1 latently infected cells in patients, in vitro primary latency models are now commonly used to study the HIV-1 reservoir. To this end, a number of experimental systems have been developed. Most of these models differ based on the nature of the primary CD4(+) T-cell type, the used HIV strains, activation methods, and latency assessment strategies. Despite these differences, most models share some common characteristics. Here, we provide a systematic review covering the primary HIV latency models that have been used to date with the aim to compare these models and identify minimal requirements for such experiments. A systematic search on PubMed and Web of Science databases generated a short list of 17 unique publications that propose new in vitro latency models. Based on the described methods, we propose and discuss a generalized workflow, visualizing all the necessary steps to perform such an in vitro study, with the key choices and validation steps that need to be made; from cell type selection until the model readout

    Accurate quantification of episomal HIV-1 two-long terminal repeat circles by use of optimized DNA isolation and droplet digital PCR

    No full text
    Episomal HIV-1 two-long terminal repeat (2-LTR) circles are considered markers for ongoing viral replication. Two sample processing procedures were compared to accurately quantify 2-LTR in patients by using droplet digital PCR (ddPCR). Here, we show that plasmid isolation with a spiked non-HIV plasmid for normalization enables more accurate 2-LTR quantification than genomic DNA isolation

    Accurate episomal HIV 2-LTR circles quantification using optimized DNA isolation and droplet digital PCR

    Get PDF
    Introduction: In HIV-infected patients on combination antiretroviral therapy (cART), the detection of episomal HIV 2-LTR circles is a potential marker for ongoing viral replication. Quantification of 2-LTR circles is based on quantitative PCR or more recently on digital PCR assessment, but is hampered due to its low abundance. Sample pre-PCR processing is a critical step for 2-LTR circles quantification, which has not yet been sufficiently evaluated in patient derived samples. Materials and Methods: We compared two sample processing procedures to more accurately quantify 2-LTR circles using droplet digital PCR (ddPCR). Episomal HIV 2-LTR circles were either isolated by genomic DNA isolation or by a modified plasmid DNA isolation, to separate the small episomal circular DNA from chromosomal DNA. This was performed in a dilution series of HIV-infected cells and HIV-1 infected patient derived samples (n=59). Samples for the plasmid DNA isolation method were spiked with an internal control plasmid. Results: Genomic DNA isolation enables robust 2-LTR circles quantification. However, in the lower ranges of detection, PCR inhibition caused by high genomic DNA load substantially limits the amount of sample input and this impacts sensitivity and accuracy. Moreover, total genomic DNA isolation resulted in a lower recovery of 2-LTR templates per isolate, further reducing its sensitivity. The modified plasmid DNA isolation with a spiked reference for normalization was more accurate in these low ranges compared to genomic DNA isolation. A linear correlation of both methods was observed in the dilution series (R2=0.974) and in the patient derived samples with 2-LTR numbers above 10 copies per million peripheral blood mononuclear cells (PBMCs), (R2=0.671). Furthermore, Bland–Altman analysis revealed an average agreement between the methods within the 27 samples in which 2-LTR circles were detectable with both methods (bias: 0.3875±1.2657 log10). Conclusions: 2-LTR circles quantification in HIV-infected patients proved to be more accurate with a modified plasmid DNA isolation procedure compared to total genomic DNA isolation. This method enables the processing of more blood cells, thus enhancing quantification accuracy and sensitivity. An improved quantification of 2-LTR circles will contribute to the better understanding of ongoing replication in the HIV reservoir of patients on cART

    Extreme value theory for threshold determination in droplet digital PCR experiments

    No full text
    Droplet digital PCR (ddPCR) technology can be used to quantify nucleic acid concentrations by measuring the fluorescence intensity for each single droplet and subsequently calling the droplet as positive or negative depending on its fluorescence intensity. Thus, setting a correct fluorescence level threshold is needed to accurately identify the presence (absence) of target nucleic acid. Currently available methods assume a normal distribution of the fluorescence readout. We show that this assumption does not hold in a large majority of assessed experiments and that wrongfully relying on this assumption typically results in an increase of false positives. By relying on extreme value theory (EVT) we do not make any assumptions on the droplet fluorescence intensity distribution. Using this EVT framework we develop a methodology for modeling the maximum fluorescence intensity of the negative droplets using negative control samples (no target nucleic acid present). We show how we subsequently select a final threshold. We discuss the (dis)advantages of relying on EVT and detail some important considerations when applying EVT and how this translates to the ddPCR case
    corecore